Stimuli-responsive polymers and their applications in drug delivery.

نویسندگان

  • Priya Bawa
  • Viness Pillay
  • Yahya E Choonara
  • Lisa C du Toit
چکیده

Interest in stimuli-responsive polymers is steadily gaining increasing momentum especially in the fields of controlled and self-regulated drug delivery. Delivery systems based on these polymers are developed to closely resemble the normal physiological process of the diseased state ensuring optimum drug release according to the physiological need. Also termed 'environmental-sensitive' or 'smart', these polymers experience rapid changes in their microstructure from a hydrophilic to a hydrophobic state triggered by small changes in the environment. The changes are reversible; therefore, the polymer is capable of returning to its initial state as soon as the trigger is removed. Stimuli may occur internally (e.g. a change in pH in certain organs or diseased states, a change in temperature or the presence of specific enzymes or antigens). External stimuli include magnetic or electric fields, light, ultrasound, etc. This review will delve into the various internally and externally stimuli-responsive polymers and the drug delivery systems that exploit them.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual Nano-Carriers using Polylactide-block-Poly(N-isopropylacrylamide-random-acrylic acid) Polymerized from Reduced Graphene Oxide Surface for Doxorubicin Delivery Applications

The stimuli-responsive nanocomposites were designed as drug delivery nanocarriers. Thanks to promising properties such as large surface area and easy chemical functionalization, the graphene derivatives can be used for the drug delivery applications. For this purpose, in the current work, the poly(L,D-lactide)-block-poly(N-isopropylacrylamide-rand-acrylic acid) grafted from reduced graphene oxi...

متن کامل

State of the art of stimuli-responsive liposomes for cancer therapy

Specific delivery of therapeutic agents to solid tumors and their bioavailability at the target site are the most clinically important and challenging goals in cancer therapy. Liposomes are promising nanocarriers and have been well investigated for cancer therapy. In spite of preferred accumulation in tumors via the enhanced permeability and retention (EPR) effect, inefficient drug release at t...

متن کامل

State of the art of stimuli-responsive liposomes for cancer therapy

Specific delivery of therapeutic agents to solid tumors and their bioavailability at the target site are the most clinically important and challenging goals in cancer therapy. Liposomes are promising nanocarriers and have been well investigated for cancer therapy. In spite of preferred accumulation in tumors via the enhanced permeability and retention (EPR) effect, inefficient drug release at t...

متن کامل

Stimuli-responsive polymers: biomedical applications and challenges for clinical translation.

Over the past 25 years many interesting biomedical uses have been proposed for stimuli-responsive polymers, including uses in diagnostics, drug delivery, tissue engineering (regenerative medicine), and cell culture. This article briefly overviews the field of stimuli-responsive polymers and describes some of the most successful biomedical applications to date of such "smart" polymers. Other int...

متن کامل

Stimuli-responsive polymers and their applications

Responsive polymer-based materials are capable of altering their chemical and/or physical properties upon exposure to external stimuli. These materials have been intensively studied over the years for a diverse range of applications, e.g., for on-demand drug delivery, tissue generation/repair, biosensing, smart coatings, and artificial muscles. Here, we review recent advances in the areas of se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomedical materials

دوره 4 2  شماره 

صفحات  -

تاریخ انتشار 2009